From Small to Very Large Scale Optimization

نویسندگان

  • Klaus Schittkowski
  • Christian Zillober
چکیده

Abs t rac t We introduce some methods for constrained nonlinear programming that are widely used in practice and that are known under the names SQP for sequential quadratic programming and SCP for sequential convex programming. In both cases, convex subproblems are formulated, in the first case a quadratic programming problem, in the second case a separable nonlinear program in inverse variables. The methods are outlined in a uniform way and the results of some comparative performance tests are listed. We especially show the suitability of sequential convex programming methods to solve some classes of very large scale nonlinear programs, where implicitly defined systems of equations seem to support the usage of inverse approximations. The areas of interest are structural mechanical optimization, i.e., topology optimization, and optimal control of partial differential equations after a full discretization. In addition, a few industrial applications and case studies are shown to illustrate practical situations under which the codes implemented by the authors are in use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Design of FPI^λ D^μ based Stabilizers in Hybrid Multi-Machine Power System Using GWO ‎Algorithm

In this paper, the theory and modeling of large scale photovoltaic (PV) in the power grid and its effect on power system stability are studied. In this work, the basic module, small signal modeling and mathematical analysis of the large scale PV jointed multi-machine are demonstrated. The principal portion of the paper is to reduce the low frequency fluctuations by tuned stabilizer in the atten...

متن کامل

Contribution to the molecular systematics of the genus Capoeta from the south Caspian Sea basin using mitochondrial cytochrome b sequences (Teleostei: Cyprinidae)

Traditionally, Capoeta populations from the southern Caspian Sea basin have been considered as Capoeta capoeta gracilis. Study on the phylogenetic relationship of Capoeta species using mitochondrial cytochrome b gene sequences show that Capoeta population from the southern Caspian Sea basin is distinct species and receive well support (posterior probability of 100%). Based on the tree topologie...

متن کامل

The braneworld stability and large-scale correction in graphene like background

In this work, we consider a graphene-like background in braneworld scenario which is one of the interesting models in cosmology and theoretical physics. Indeed, this paper is an application of holography in condense matter. We use the geometric form of potential which help to obtain field equations and solve it to obtain the energy spectrum. In that case we calculate superpotential and energy d...

متن کامل

COMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES

Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...

متن کامل

THE OPTIMIZATION OF LARGE-SCALE DOME TRUSSES ON THE BASIS OF THE PROBABILITY OF FAILURE

Metaheuristic algorithms are preferred by the many researchers to reach the reliability based design optimization (RBDO) of truss structures. The cross-sectional area of the elements of a truss is considered as design variables for the size optimization under frequency constraints. The design of dome truss structures are optimized based on reliability by a popular metaheuristic optimization tec...

متن کامل

DISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM

Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006